Role of Bcr1-Activated Genes Hwp1 and Hyr1 in Candida Albicans Oral Mucosal Biofilms and Neutrophil Evasion

نویسندگان

  • Prabhat Dwivedi
  • Angela Thompson
  • Zhihong Xie
  • Helena Kashleva
  • Shantanu Ganguly
  • Aaron P. Mitchell
  • Anna Dongari-Bagtzoglou
چکیده

Candida albicans triggers recurrent infections of the oropharyngeal mucosa that result from biofilm growth. Prior studies have indicated that the transcription factor Bcr1 regulates biofilm formation in a catheter model, both in vitro and in vivo. We thus hypothesized that Bcr1 plays similar roles in the formation of oral mucosal biofilms and tested this hypothesis in a mouse model of oral infection. We found that a bcr1/bcr1 mutant did not form significant biofilm on the tongues of immunocompromised mice, in contrast to reference and reconstituted strains that formed pseudomembranes covering most of the tongue dorsal surface. Overexpression of HWP1, which specifies an epithelial adhesin that is under the transcriptional control of Bcr1, partly but significantly rescued the bcr1/bcr1 biofilm phenotype in vivo. Since HWP1 overexpression only partly reversed the biofilm phenotype, we investigated whether additional mechanisms, besides adhesin down-regulation, were responsible for the reduced virulence of this mutant. We discovered that the bcr1/bcr1 mutant was more susceptible to damage by human leukocytes when grown on plastic or on the surface of a human oral mucosa tissue analogue. Overexpression of HYR1, but not HWP1, significantly rescued this phenotype. Furthermore a hyr1/hyr1 mutant had significantly attenuated virulence in the mouse oral biofilm model of infection. These discoveries show that Bcr1 is critical for mucosal biofilm infection via regulation of epithelial cell adhesin and neutrophil function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function of Candida albicans adhesin Hwp1 in biofilm formation.

Hwp1 is a well-characterized Candida albicans cell surface protein, expressed only on hyphae, that mediates tight binding to oral epithelial cells. Prior studies indicate that HWP1 expression is dependent upon Bcr1, a key regulator of biofilm formation. Here we test the hypothesis that Hwp1 is required for biofilm formation. In an in vitro model, the hwp1/hwp1 mutant produces a thin biofilm tha...

متن کامل

Role of SFP1 in the Regulation of Candida albicans Biofilm Formation

Candida albicans is a major human fungal pathogen. One of the important features of C. albicans pathogenicity is the ability to form biofilms on mucosal surfaces and indwelling medical devices. Biofilm formation involves complex processes in C. albicans, including cell adhesion, filamentous growth, extracellular matrix secretion and cell dispersion. In this work, we characterized the role of th...

متن کامل

Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo.

Candida albicans is a causative agent of oropharyngeal candidiasis (OPC), a biofilm-like infection of the oral mucosa. Biofilm formation depends upon the C. albicans transcription factor Bcr1, and previous studies indicate that Bcr1 is required for OPC in a mouse model of infection. Here we have used a nanoString gene expression measurement platform to elucidate the role of Bcr1 in OPC-related ...

متن کامل

Hwp1 gene Expression of Candida albicans and Study its role in adherence

Candida albicans is an opportunistic fungal pathogen found as mycoflora in the human body surfaces. Sevral genes play a crucial rule in its virulence including Hwp1 (hyphal wall protein 1), BCR1 and ALS gene family. Hwp1 gene is a responsible for coding a cell surface protein, which mediates biofilm formation in candida albicans. Here we investigated the presence of the HWP1gene was characteris...

متن کامل

Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo

The fungal pathogen Candida albicans is frequently associated with catheter-based infections because of its ability to form resilient biofilms. Prior studies have shown that the transcription factor Bcr1 governs biofilm formation in an in vitro catheter model. However, the mechanistic role of the Bcr1 pathway and its relationship to biofilm formation in vivo are unknown. Our studies of biofilm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011